On the Dimension of Finite Permutation Group Actions

نویسنده

  • Jonathan D. H. Smith
چکیده

The dimension (or “minimal base size”) of a finite permutation group action is defined to be the smallest power of the action that contains a regular orbit. Although the concept has appeared before in various contexts, the intention of the current paper is to survey it from a slightly different viewpoint, with particular emphasis on its behaviour with respect to G-set constructions. Elementary inequalities relate the dimension to the degree and closure properties of the action. The dimension is also expressed exactly in terms of the Möbius function of the subgroup lattice of the permutation group. For geometric permutation actions, the dimension is related to the geometric dimension of the space being acted on. The behaviour of the dimension is studied with respect to disjoint unions, Cartesian products, and wreath products of actions. Use of the wreath product construction exhibits permutation group actions with arbitrary positive integral dimension and degree-to-dimension ratio.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QUASI-PERMUTATION REPRESENTATIONS OF SUZtTKI GROUP

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fai...

متن کامل

Finite Groups, Designs and Codes

Introduction Terminology and notation Group Actions and Permutation Characters Method 1 References Finite Groups, Designs and Codes J Moori School of Mathematical Sciences, University of KwaZulu-Natal Pietermaritzburg 3209, South Africa ASI, Opatija, 31 May –11 June 2010 J Moori, ASI 2010, Opatija, Croatia Groups, Designs and Codes Abstract Introduction Terminology and notation Group Actions an...

متن کامل

On the Mark and Markaracter Tables of Finite Groups

Let G be a finite group and C(G) be the family of representative conjugacy classes of‎ ‎subgroups of G‎. ‎The matrix whose H,K-entry is the number of ‎fixed points of the set G/K under the action of H is called the‎ ‎table of marks of G where H,K run through all elements in‎ C(G)‎. Shinsaku Fujita for the first time introduced the term “markaracter” to discuss marks for permutation representati...

متن کامل

QUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...

متن کامل

Automorphisms of the Dimension Group and Gyration Numbers

Let Aut(O"A) denote the group of automorphisms of a subshift of finite type (XA'O"A) built from a primitive matrix A. We show that the sign-gyrationcompatibility-condition homomorphism SGCC A, m defined on Aut( 0" A) factors through the group Aut(s A) of automorphisms of the dimension group. This is used to find a mixing subshift of finite type with a permutation of fixed points that cannot be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002